Convex regularized recursive maximum correntropy algorithm

نویسندگان

  • Xie Zhang
  • Kaixin Li
  • Zongze Wu
  • Yuli Fu
  • Haiquan Zhao
  • Badong Chen
چکیده

In this brief, a robust and sparse recursive adaptive filtering algorithm, called convex regularized recursive maximum correntropy (CR-RMC), is derived by adding a general convex regularization penalty term to the maximum correntropy criterion (MCC). An approximate expression for automatically selecting the regularization parameter is also introduced. Simulation results show that the CR-RMC can significantly outperform the original recursive maximum correntropy (RMC) algorithm especially when the underlying system is very sparse. Compared with the convex regularized recursive least squares (CR-RLS) algorithm, the new algorithm also shows strong robustness against impulsive noise. The CR-RMC also performs much better than other LMS-type sparse adaptive filtering algorithms based on MCC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Correntropy Adaptive Filtering Approach for Robust Compressive Sensing Reconstruction

Robust compressive sensing(CS) reconstruction has become an attractive research topic in recent years. Robust CS aims to reconstruct the sparse signals under non-Gaussian(i.e. heavy tailed) noises where traditional CS reconstruction algorithms may perform very poorly due to utilizing l2 norm of the residual vector in optimization. Most of existing robust CS reconstruction algorithms are based o...

متن کامل

Complex Correntropy: Probabilistic Interpretation and Optimization

Recent studies have demonstrated that correntropy is an efficient tool for analyzing higher-order statistical moments in nonGaussian noise environments. Although correntropy has been used with complex data, no theoretical study was pursued to elucidate its properties, nor how to best use it for optimization . This paper presents a probabilistic interpretation for correntropy using complex-value...

متن کامل

Adaptive beamforming method based on recursive maximum correntropy in impulsive noise with alpha-stable process

As a well-established adaptation criterion, the maximum correntropy criterion (MCC) has been receiving increasing attention due to its robust against outliers. In this paper, a new complex recursive maximum correntropy (CRMC) algorithm without any priori information on the noise characteristics, is proposed under the MCC. The proposed algorithm is useful for adaptive beamforming, when the desir...

متن کامل

Regularized maximum correntropy machine

In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the cl...

متن کامل

Recursive Generalized Maximum Correntropy Criterion Algorithm with Sparse Penalty Constraints for System Identification

To address sparse system identification problem in non-Gaussian impulsive noise environment, the recursive generalized maximum correntropy criterion (RGMCC) algorithm with sparse penalty constraints is proposed to combat impulsive-inducing instability. Specifically, a recursive algorithm based on the generalized correntropy with a forgetting factor of error is developed to improve the performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2016